Increase of sodium channels in demyelinated lesions of multiple sclerosis.
نویسندگان
چکیده
Redistribution of sodium channels along demyelinated pathways in multiple sclerosis (MS) could be an important event in restoring conduction prior to other reparative mechanisms such as remyelination. Sodium channels in human multiple sclerosis lesions were identified by quantitative light microscopic autoradiography using tritiated saxitoxin (STX), a highly specific sodium channel ligand. Demyelinated areas in various central nervous system regions containing denuded but vital axons exhibited a high increase of STX-binding sites by up to a factor of 4 as compared to normal human white matter. This important finding could explain aspects of fast clinical remissions and 'silent' MS lesions on functional and morphological properties. Demyelinated axons may functionally reorganize their membranes and adapt properties similar to those of slow conducting unmyelinated nerve fibres which have a higher amount and a more diffuse distribution of STX binding sites. This report is the first description of an altered distribution of voltage-sensitive sodium channels in human multiple sclerosis lesions.
منابع مشابه
Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis.
Saltatory conduction in myelinated fibres depends on the specific molecular organization of highly specialized axonal domains at the node of Ranvier, the paranodal and the juxtaparanodal regions. Voltage-gated sodium channels (Na(v)) have been shown to be deployed along the naked demyelinated axon in experimental models of CNS demyelination and in multiple sclerosis lesions. Little is known abo...
متن کاملIncreased mitochondrial content in remyelinated axons: implications for multiple sclerosis.
Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyeli...
متن کاملMolecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger.
Although voltage-gated sodium channels are known to be deployed along experimentally demyelinated axons, the molecular identities of the sodium channels expressed along axons in human demyelinating diseases such as multiple sclerosis (MS) have not been determined. Here we demonstrate changes in the expression of sodium channels in demyelinated axons in MS, with Nav1.6 confined to nodes of Ranvi...
متن کاملSodium channel expression within chronic multiple sclerosis plaques.
Multiple sclerosis (MS) is characterized by focal destruction of myelin sheaths, gliotic scars, and axonal damage that contributes to the accumulation of nonremitting clinical deficits. Previous studies have demonstrated coexpression of sodium channel Nav1.6 and the sodium-calcium exchanger (NCX), together with beta-amyloid precursor protein (beta-APP), a marker of axonal damage, in degeneratin...
متن کاملReview: Mitochondria and disease progression in multiple sclerosis.
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Recent evidence suggests that dysfunction of surviving demyelinated axons and axonal degeneration contribute to the progression of MS. We review the evidence for and potential mechanisms of degeneration as well as dysfunction of chronically demyelinated axons in MS with particular reference to mitoch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 556 2 شماره
صفحات -
تاریخ انتشار 1991